Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Frontiers in neurology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2267870

ABSTRACT

Introduction The study aims to evaluate the concentration of IgG antibodies against the receptor-binding domain of the SARS-CoV-2 spike1 protein (S1RBD) in BNT162b2- vaccinated relapsing-remitting multiple sclerosis (RRMS) individuals receiving disease-modifying treatments (DMTs). Methods Serum from 126 RRMS volunteers was collected 3 months after the administration of the second dose of the Pfizer-BioNTech BNT162b2 vaccine. Additional samples were analyzed after the administration of the booster dose in fingolimod- treated MS. Anti-S1RBD IgG antibody concentrations were quantified using the ABBOTT SARS-CoV-2 IgG II Quant assay. Results Anti-S1RBD IgG antibody concentrations in RRMS individuals receiving natalizumab, interferons, teriflunomide, and dimethyl fumarate showed no significant difference to those in healthy controls. However, fingolimod-treated MS individuals showed a marked inability to produce SARS-CoV-2- specific antibodies (p < 0.0001). Furthermore, a booster dose was not able to elicit the production of IgG antibodies in a large portion of matched individuals. Discussion A possible explanation for the altered immune response in fingolimod- treated MS individuals could be due to the medication inhibiting the circulation of lymphocytes, and possibly in turn inhibiting antibody production. Overall, patients on DMTs are generally of no disadvantage toward mounting an immune response against the vaccine. Nevertheless, further studies require evaluating non-humoral immunity against SARS-CoV-2 following vaccination, as well as the suitability of such vaccinations on patients treated with fingolimod.

2.
Front Neurol ; 14: 1092999, 2023.
Article in English | MEDLINE | ID: covidwho-2267871

ABSTRACT

Introduction: The study aims to evaluate the concentration of IgG antibodies against the receptor-binding domain of the SARS-CoV-2 spike1 protein (S1RBD) in BNT162b2- vaccinated relapsing-remitting multiple sclerosis (RRMS) individuals receiving disease-modifying treatments (DMTs). Methods: Serum from 126 RRMS volunteers was collected 3 months after the administration of the second dose of the Pfizer-BioNTech BNT162b2 vaccine. Additional samples were analyzed after the administration of the booster dose in fingolimod- treated MS. Anti-S1RBD IgG antibody concentrations were quantified using the ABBOTT SARS-CoV-2 IgG II Quant assay. Results: Anti-S1RBD IgG antibody concentrations in RRMS individuals receiving natalizumab, interferons, teriflunomide, and dimethyl fumarate showed no significant difference to those in healthy controls. However, fingolimod-treated MS individuals showed a marked inability to produce SARS-CoV-2- specific antibodies (p < 0.0001). Furthermore, a booster dose was not able to elicit the production of IgG antibodies in a large portion of matched individuals. Discussion: A possible explanation for the altered immune response in fingolimod- treated MS individuals could be due to the medication inhibiting the circulation of lymphocytes, and possibly in turn inhibiting antibody production. Overall, patients on DMTs are generally of no disadvantage toward mounting an immune response against the vaccine. Nevertheless, further studies require evaluating non-humoral immunity against SARS-CoV-2 following vaccination, as well as the suitability of such vaccinations on patients treated with fingolimod.

3.
BMC Res Notes ; 15(1): 292, 2022 Sep 07.
Article in English | MEDLINE | ID: covidwho-2009453

ABSTRACT

OBJECTIVE: Cases of thrombosis have been reported after administration of SARS-CoV-2 vaccines, with controversial results relating to Oxford-AstraZeneca's ChAdOx1-S. Despite such cases being rare, they still raised concerns for their involvement in coagulopathies. Anti-cardiolipin (aCL) IgG antibodies have been linked to venous and arterial thrombosis. The aim was to evaluate the concentration of aCL IgG antibodies in vaccinated and COVID-19 positive individuals using indirect ELISA and commercial sourced calibrators. RESULTS: The concentration of aCL IgG antibodies was measured in the serum of COVID-19 positive (n = 37), ChAdOx1-S vaccinated (n = 37) and BioNTech Pfizer BNT162b2 vaccinated (n = 42) individuals. Samples from COVID-19 negative, unvaccinated individuals (n = 41) served as controls. The highest percentage of positivity was in the COVID-19 positive group (18.9%). Concerning vaccination, BNT162b2 had the highest percentage of positivity (11.9%) (p = 0.0037). Additionally, aCL concentrations were evaluated at different time points in both vaccinated groups (before, 3 weeks after and 3 months after the second dose). A significant difference in the levels of aCL IgG antibodies over time (p = 0.0391) was observed only in ChAdOx1-S individuals. Our study concluded that levels of aCL, after vaccination with either of the vaccines or following SARS-CoV-2 infection, were not clinically pathogenic for the risk of thrombosis.


Subject(s)
COVID-19 , Thrombosis , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Cardiolipins , Humans , Immunoglobulin G , SARS-CoV-2 , Vaccination
4.
Microorganisms ; 10(5)2022 May 04.
Article in English | MEDLINE | ID: covidwho-1820339

ABSTRACT

There is an ongoing effort to report data on SARS-CoV-2 antibodies in different individuals. Ninety-seven healthcare workers were enrolled in this study (Pfizer's BNT162b2, n = 52; and AstraZeneca's ChAdOx1-S, n = 45) and S1RBD-specific IgG antibodies were analyzed over time. Both vaccines induced S1RBD-specific antibodies after the second dose. A significant increase in S1RBD-specific IgG median levels 3 weeks following the second dose was detected (BNT162b2, 118.0 BAU/mL to 2018.0 BAU/mL; ChAdOx1-S, 38.1 BAU/mL to 182.1 BAU/mL). At 3 months post the second dose, a significant decrease in S1RBD-specific IgG median levels was also evident (BNT162b2, 415.6 BAU/mL, ChAdOx1-S, 84.7 BAU/mL). The elimination rate of these antibodies was faster in BNT162b2- rather than ChAdOx1-S- vaccinated individuals. A booster dose induced a significant increase in the S1RBD-specific IgG median levels (BNT162b2, 1823.0 BAU/mL; ChAdOx1-S, 656.8 BAU/mL). This study is the first of its kind to characterize S1RBD-specific IgG antibody responses in vaccinated healthcare workers in Cyprus. While the positivity for S1RBD-specific antibodies was maintained 3 months after the second vaccine dose, the level of these antibodies waned over the same period, indicating the importance of a booster vaccination. The results herein could complement the public health policies regarding the immunization schedule for COVID-19.

5.
Microorganisms ; 10(1)2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1580567

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has hit its second year and continues to damage lives and livelihoods across the globe. There continues to be a global effort to present serological data on SARS-CoV-2 antibodies in different individuals. As such, this study aimed to characterize the seroprevalence of SARS-CoV-2 antibodies in the Cypriot population for the first time since the pandemic started. Our results show that a majority of people infected with SARS-CoV-2 developed IgG antibodies against the virus, whether anti-NP, anti-S1RBD, or both, at least 20 days after their infection. Additionally, the percentage of people with at least one antibody against SARS-CoV-2 in the group of volunteers deemed SARS-CoV-2 negative via RT-PCR or who remain untested/undetermined (14.43%) is comparable to other reported percentages worldwide, ranging anywhere from 0.2% to 24%. We postulate that these percentages reflect the underreporting of true infections in the population, and also show the steady increase of herd immunity. Additionally, we showed a significantly marked decrease in anti-NP IgG antibodies in contrast to relatively stable levels of anti-S1RBD IgG antibodies in previously infected individuals across time.

6.
PLoS One ; 16(7): e0248792, 2021.
Article in English | MEDLINE | ID: covidwho-1319514

ABSTRACT

Whole genome sequencing of viral specimens following molecular diagnosis is a powerful analytical tool of molecular epidemiology that can critically assist in resolving chains of transmission, identifying of new variants or assessing pathogen evolution and allows a real-time view into the dynamics of a pandemic. In Cyprus, the first two cases of COVID-19 were identified on March 9, 2020 and since then 33,567 confirmed cases and 230 deaths were documented. In this study, viral whole genome sequencing was performed on 133 SARS-CoV-2 positive samples collected between March 2020 and January 2021. Phylogenetic analysis was conducted to evaluate the genomic diversity of circulating SARS-CoV-2 lineages in Cyprus. 15 different lineages were identified that clustered into three groups associated with the spring, summer and autumn/winter wave of SARS-CoV-2 incidence in Cyprus, respectively. The majority of the Cypriot samples belonged to the B.1.258 lineage first detected in September that spread rapidly and largely dominated the autumn/winter wave with a peak prevalence of 86% during the months of November and December. The B.1.1.7 UK variant (VOC-202012/01) was identified for the first time at the end of December and spread rapidly reaching 37% prevalence within one month. Overall, we describe the changing pattern of circulating SARS-CoV-2 lineages in Cyprus since the beginning of the pandemic until the end of January 2021. These findings highlight the role of importation of new variants through travel towards the emergence of successive waves of incidence in Cyprus and demonstrate the importance of genomic surveillance in determining viral genetic diversity and the timely identification of new variants for guiding public health intervention measures.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/genetics , Cyprus/epidemiology , Humans , Molecular Epidemiology , Phylogeny , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL